Review

Residual entropy and structural disorder in glass: A review of history and an attempt to resolve two apparently conflicting views

Akira Takada a,b,* Reinhard Conradt c, Pascal Richet d,e

a Research Center, Asahi Glass Co. Ltd., 1150 Hanaaro-cho, Yokohama 221-8755, Japan
b University College London, Gower Street, London WC1E 6BT, UK
c RWTH Aachen University, 52064 Aachen, Germany
d, e Institut de Physique du Globe de Paris, 1 rue Jussieu, 75005 Paris, France

A R T I C L E I N F O

Article history:
Received 21 May 2015
Received in revised form 13 August 2015
Accepted 14 August 2015
Available online 3 September 2015

Keywords:
Configurational entropy;
Thermodynamics;
Statistical mechanics;
Calorimetry

A B S T R A C T

With the aim of discussing recent conflicting views of configurational entropy in frozen-in systems, we begin this paper with a brief review of the history of the entropy concept. Whereas the 'conventional' view of entropy had been elaborated after long and heated debates, a recently proposed 'kinetic' view has denied the existence of residual entropy in amorphous systems. We thus examine the validity of the 'conventional' view and then propose a more complete picture of the glassy state from the complementary roles of two conflicting views. Above all, we analyze the consistency of the 'spatial sampling' method and the difference from the other two methods by using three simple models and thought experiments. Our first conclusion is that, as defined for non-equilibrium systems within the framework of thermodynamics, entropy remains an objective state variable for which an observation time needs not to be specified. The second is that, owing to its extensive nature, entropy is in fact strongly linked to the distribution in configuration and momentum space rather than to temporal integration. As an obvious consequence, the degree of structural disorder remains an essential issue in glass thermodynamics. The third is that the new concepts of magnitude and phase factor of entropy indicate that the 'conventional' view, according to which configurational entropy does not vanish in irreversibly frozen-in systems, is not only consistent with thermodynamic theory and available data, but also accounts for kinetic effects such as fluctuation phenomena. With the concept of phase factor of entropy, the number of phase factors visited during the observation time in the 'conventional' view turns to be almost equivalent to the entropy value defined by the 'kinetic' view. Finally, non-zero values of residual entropies measured by calorimetry based on the 'conventional' view are real and useful features that have a fundamental bearing on the physics and chemistry of real crystals and glasses. The 'kinetic' view is also a useful tool as well to understand the kinetic effects, such as the rapid slow down from liquids to glass and the glass transition. It is strongly hoped that a complete picture of the glassy state will be advanced further.

© 2015 Elsevier B.V. All rights reserved.

Contents

1. Introduction .. 34
2. Entropy: from heat to information 34
3. Residual entropy and the third law of thermodynamics: statements and controversial points .. 35
4. The main source of controversy: sampling methods for general entropy calculations .. 36
5. Entropy within universal framework of physical law 38
6. Entropy and the second law of thermodynamics 39
7. Extensive nature of entropy and merit of the thermodynamic limit .. 40
8. Glass transition and relaxation in terms of entropy change .. 41
9. Conclusions .. 42
Acknowledgments ... 42

* Corresponding author at: Research Center, Asahi Glass Co. Ltd., 1150 Hanaaro-cho, Yokohama 221-8755, Japan.
E-mail addresses: akira-takada@acp.com (A. Takada).

http://dx.doi.org/10.1016/j.jnoncrysol.2015.08.019
0022-3093/© 2015 Elsevier B.V. All rights reserved.