Migration behavior of network-modifier cations at glass surface during electrical poling

Toshiro Suzuki a,*, Junko Anzai a, Yasuyuki Takimoto a, Keichiro Uraji b, Kiyoshi Yamamoto a, Junji Nishii c

a Innovative Technology Research Center, Asahi Glass Co., Ltd., 1150 Hanzawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755, Japan
b Innovative Technology Research Center, Asahi Glass Co., Ltd., 1-1 Surhane-cho, Tsukumi-ku, Yokohama, Kanagawa 220-0045, Japan
c Research Institute for Electronic Science, Hokkaido University, Kita06, Nishi09, Kita-ku, Sapporo, Hokkaido 060-0071, Japan

A R T I C L E I N F O
Article history:
Received 7 July 2016
Received in revised form 18 August 2016
Accepted 23 August 2016
Available online 30 August 2016

Keywords:
Electrical poling
Cation migration
Si E’ center
Car-XPS
ESR

A B S T R A C T
X-ray photoelectron spectroscopy with Car-ion sputtering (Car-XPS) and electron spin resonance (ESR) revealed the migration behavior of network-modifier cations in an electrically poled soda-lime silicate glass. The Na+-deficient layer of 700-nm thickness was confirmed at the anode side surface. The Mg2+ and Ca2+ existed in the 200-nm thick layer from the top surface were concentrated in the layer of 200–700 nm depth from the surface. Additionally the oxygen content in the 200-nm thick layer decreased by the degassing as oxygen molecules from the glass surface, which is an essential requirement for the migration of Mg2+ and Ca2+ to cathode side. The bond scission between Si–O–Si is caused by the concentrated Mg2+ and Ca2+, resulting the formation of Si=O (Mg2+ or Ca2+) = OSiMe and =Si=O (Si E’ center). We have also confirmed the generation of oxygen hole center (NBOHC) and peroxo radical (POR) in the electrically poled soda-lime silicate glass. © 2016 Elsevier B.V. All rights reserved.

1. Introduction

Nanoimprint technology is crucial to apply a new function on the glass surface such as diffraction, phase control, antireflection. Recently, the electrical nanoimprint was reported as a low temperature and low pressure process for the fine pattern formation on several materials [1–4]. Ikutate et al. reported that periodic structures were imprinted on a soda-lime silicate glass substrate below its glass transition temperature using a carbon-coated SiO2 mold under applying direct current (DC) voltage [4]. It was confirmed that the alkali metal ions at the anode side surface migrated to the cathode side only in the contacted area of the imprint mold [4,5]. Furthermore, the chemical etching using a KOH solution was useful for the fabrication of the fine structures on the electrically nanoimprinted glass corresponding to the mobile cations distribution. In order to optimize the periodic structure shapes, it is important to understand the migration mechanism of network-modifier cations in the glass during the DC voltage application.

Historically, many researchers have investigated the migration mechanism of the network-modifier cations in oxide glasses by the heat treatment in several kinds of glasses [6–16]. In certain condition, the inward migrations not only of Na+ but also of Ca2+ were observed at the surface of a soda-lime silicate glass [11–16]. Similar investigations were conducted for the electrically poled glasses [17–21]. Krieger et al. investigated the transport phenomena of ions (Na+, Ca2+, and H+) in a soda-lime glass after the electrical poling using the Rutherford backscattering method [17]. They suggested that the formation and migration of holes are the driving force for the inward migration of Na+ and Ca2+ ions in the glass surface region. In such a case, the consideration of charge balance in the poled area should be a critical issue to understand the migration behaviors of mobile ions. However, the formation of holes has not been confirmed yet in glass surface region. This paper reports the migration behavior of network-modifier cations in the electrically poled soda-lime silicate glass surface. An X-ray photoelectron spectroscopy with Car-ion sputtering (Car-XPS) and an electron spin resonance (ESR) were used for the analysis. Car-XPS allows a precise depth profiling of network-modifier cations with the suppression of the remigration of mobile ions during the analysis [22].

2. Experimental procedures

Commercial soda-lime silicate glass [Composition: 72SiO2–12Na2O–9CaO–6MgO–1Al2O3 (mol%) AGC Co., Ltd.] was used for the experiment. The glass thickness was adjusted to 1 mm by polishing both glass surfaces. The anode electrode was a silicon glass plate of 25 × 25 × 2 mm coated with Pt thin film of 500-nm thickness. The cathode electrode was a carbon plate. The glass plate was sandwiched between two electrodes and pressurized under 3 MPa. The electrical poling was conducted at 450 °C for 90 s in an N2 atmosphere under the application of DC voltages. The DC voltage was changed between 25–400 V to obtain the different thickness of the treated surface layer. Fig. 1 presents a typical current profile during the electrical poling to the soda-lime silicate glass under the applied voltage of 400 V.

* Corresponding author.
E-mail address: toshi-suzuki@agc.com (T. Suzuki).

http://dx.doi.org/10.1016/j.jnoncrysol.2016.08.037
0022-3093/© 2016 Elsevier B.V. All rights reserved.

- 67 -