UDC: 543.428: 539.27

8. ガラスの表面と応用 Basic Research of Glass Surface and its Application

山本雄一* Yuichi Yamamoto

ガラス表面の分析手法と、フロートガラスおよび光学ガラスへの適用例について報告す る。X線電子分光(XPSまたはESCA)およびオージェ電子分光(AES)において深さ方向 分析を行うには、Arイオンスパッタが最も広く用いられている。しかし、ソーダライムシ リカガラスのような可動イオンを含むガラスにおいては、スパッタダメージを受けるため 定量的な分析がこれまで不可能であった。今般、C60イオンスパッタを用いることにより、 可動イオンの移動のない正確な深さ方向プロファイルが取得可能になった。また、C60イオ ンスパッタとXPS分析との組み合わせにより、Arイオンスパッタによって可動イオンが移 動している様子や、フロートガラスのSO2処理による組成変化が明瞭に確認された。光学ガ ラスにおいては、プレス成形における各種ガラスと金型の反応性が各材料の塩基度と関係 していることも示唆された。

The surface analysis methods and the applications for a float glass and optical glasses were reported. For the depth analysis of glasses, Ar ion sputtering is one of the most accepted techniques in practical X-ray photoelectron spectroscopy (XPS) and Auger spectroscopy (AES), while this technique is known to be inadequate for quantitative analysis of glass including mobile ions such as soda-lime-silica glass. The precise depth profiling becomes possible by using buckminsterfullerene (C₆₀) ion sputtering to suppress the migration of mobile ions in glass. The precise analysis revealed that the ion implantation during Ar ion sputtering resulted in the compositional change due to the migration of mobile ions, and the compositional change between top and bottom surface on the float glass after SO₂ treatment. In optical glasses, it was explained that the reactivity at the interface between various glasses and molds correlates with the basicity on both materials.

1. 緒 言

ガラスは用途や求められる特性により組成や成形 方法が種々変わり、それに伴いガラスの表面特性も 大きく変化する。ガラス表面が関与した現象(物性) としては、例えば、ガス吸着(汚れやすさ)、濡れ (親水性、撥水性)、摩擦(物理的強度、化学的相互 作用)、研磨(物理的強度、反応性)、接着(密着性)、 腐食(化学的耐久性)などが挙げられる。特に、生体用ガラス、耐アルカリガラス、廃棄物含有ガラス などの性能に直接関与する化学的耐久性は表面その ものに依存している⁽¹⁾。

ガラスの表面について最も古くから研究が進んでいるのは、やはり化学的耐久性との関係についてである。例えば、ガラス組成との関連については、100SiO₂+(33.3-x)Na₂O+xRO(R₂O₃またはRO₂)の

^{*} 中央研究所 主席 (E-mail : yuichi-yamamoto@agc.co.jp) Senior Researcher of Research Center

基礎ガラスでROとしてCaO, MgO, BaO, Al₂O₃, TiO₂, ZrO₂を順次置換したガラスについて耐水性、耐酸性 を調べ、効果の大きいものから記すと次のようにな ることがわかっている⁽²⁾。

- 耐水性:ZrO₂ > Al₂O₃ > TiO₂ > ZnO > MgO > CaO > BaO
- 耐酸性: $ZrO_2 > Al_2O_3 > ZnO > CaO > TiO_2 > MgO > BaO$

ガラスの成形法は種々知られているが、最近の板 ガラスは、高い平滑性を付与するため、溶かしたガ ラス素地を溶融金属(錫)の上に浮かべ、厳密な温 度操作で厚み・板幅の均一な板ガラスに成形するフ ロート法により製造されるのが一般的である。その ため、板ガラスの表と裏でそれぞれ特性が異なる。 錫と接した面(ボトム面)の方が、非接触面(トッ プ面)に比べて吸着性⁽³⁾および化学的耐久性が高いこ と⁽⁴⁾などが確認されている。

食器やCRT用ガラス、光学レンズなどの成形方法 として広く用いられているのは、プレス成形法であ る。特に光学レンズにおいては、幅広い屈折率のラ インナップを揃えるためには様々な組成のガラスを 成形する必要がある。その際、ガラスと金型の反応 性によっては、生産性が大きく異なってくる。この ようなガラス組成に伴う特性変化を整理する際に有 効なのが、ガラスの塩基度である。酸化物ガラスの 溶融体の塩基度の尺度としては、酸素イオン活量、 光学的塩基度などが提案されている⁽⁵⁾。

ガラスの表面特性を制御するには、その表面状態 を把握するための分析が重要となる。ここでは、ガ ラス表面の分析法と、最も一般的なガラスであるフ ロートガラス、さらには様々な組成ガラスが検討さ れている光学ガラスについて各種分析法を適用した 例について報告する。

2. ガラス表面の分析法

測定方法と、情報を知り得る層の表面からの深さ との関係は、**Table 1**に示すようなものになる。この 中で、最も発達し普及したものとして、X線電子分 光(XPSまたはESCA)、二次イオン質量分析 (D-SIMSおよびTOF-SIMS)、オージェ電子分光 (AES)が挙げられる。いずれも、イオンスパッタ によって試料を表面からエッチングしながら分析す ることで、深さ方向の分析が可能となる。

ガラスに対してこれらの分析を適用する上で最も

Table 1	Surface a	analysis	methods.
---------	-----------	----------	----------

分析方法	情報深さ (nm)	感度	特種
xps(ESCA)	~5	0.1%	横合状態の分析可能
D-SIMS	~5	ppb~PPm	感度が最も良い
TOF-SIMS	~1	ppm	化学構造の分析可能
AES	~5	0.1%	面分解能が最も良い
RBS	~103	0.01%	非破壊で10~20nm毎の深さ方向分析可能
PIXE	10 ³ ~	ppm	非破壊で高感度
NRA	10 ³ ~	ppm	非破壊で10~20nm毎の漂さ方向分析可能
EPMA	~10 ³	0.01~0.1%	形態情報も得られる

問題となるのは、試料の帯電である。電子ビームや イオンビームによる帯電が多いと、表面の組成変化、 ビームの振れ、誘電破壊が起こることがある。AES では、二次電子収率が1より小さいと負に帯電を起 こして不安定となるので、電子ビームの入射角を表 面に対して水平に近くするなどの工夫によって二次 電子収率を大きくして、XPSと同様に正に帯電させ る。正の帯電では、低エネルギーの二次電子が引き 戻されたりするため、比較的安定な帯電である。安 定な帯電では電子スペクトルが均一にシフトするだ けの場合もあるが、電気的な励起による着色中心の 生成、電場による拡散、あるいは加熱の影響などが 考えられるので時間的変化に注意する必要がある⁽⁶⁾。

Fig. 1 XPS depth profiles of fractured soda-limesilica glass (70.4:SiO₂, 0.9:Al₂O₃, 7.3:MgO, 7.8:CaO, 13.6:Na₂O in mol%) with (a) Ar and (b) C₆₀ ion sputtering, respectively.

XPSは結合エネルギーのシフトを測定できるため、 状態分析に用いられてきた。例えば、架橋酸素と非 架橋酸素の区別ができる⁽⁷⁾。また、非架橋酸素のO_{1s} ピーク強度はアルカリ含量と共に増大し、低エネル ギーへのシフトはLi→Na→K→Csの順に増大する。 すなわち、O_{1s}ピークの位置は、アルカリ度の増大、 電気陰性度の減少、非架橋酸素における電子密度の 増大と共に低エネルギーの方にシフトしていること を示している。さらには、O_{1s}シグナルの束縛エネル ギーを酸化物イオンのLewis塩基度の評価に用いるこ との可能性についても検討がなされている⁽⁸⁾。

SIMSは水素や同位体分析が可能であることから、

水とガラス表面との反応状態の解析に広く用いられ てきた^(9~11)。

SIMSのプローブはイオンビームであるが、AES およびXPSでの深さ方向分析においても、表面を数 nmステップでエッチングする際にイオンビームが用 いられる。イオンビームを用いると、電場によるイ オンの移動、スパッタ収率の違い、イオンの運動エ ネルギーによる表面原子の押し込みなどにより、試 料表面の組成を変化させると考えられている^(12~14)。 すなわち、これらの分析法を数nmレベルの深さ方向 分析に適用するには、イオンスパッタ時のダメージ 低減が課題であった。

最近、有機物の深さ方向分析には、C₆₀イオンビー ムとXPSの組み合わせがダメージ低減に大変有効で あることが報告されている(15.16)。そこで、我々は本手 法をガラス表面分析に適用した¹⁴⁾。Figure1に、ソー ダライムシリカガラス (70.4:SiO₂, 0.9:Al₂O₃, 7.3:MgO, 7.8:CaO, 13.6:Na₂O in mol%)の割断面を、一般的に 用いられているArイオンとCooイオンビームでそれぞ れスパッタしながら分析した結果を示す。Arイオン ビームを用いると、Arイオンの表面への打ち込みの 影響で、修飾イオン成分(Na, Ca, Mg)がガラス中 内部へ移動し、その結果バルク濃度(24.6:Si, 0.6:Al, 2.5:Mg, 2.7:Ca, 9.5:Na, 60.1:O in mol%) と大きく異 なった組成分布が得られる。それに対して、C₆₀イオ ンビームを用いると、表面からバルク濃度に対応し た一定のリーズナブルなプロファイルが得られる。 このように、本手法を用いることにより、表面近傍 の組成分布を数nm以内の分解能で分析することが可 能となり、今後の活用が期待される。

3. フロートガラスの表面

第1章で述べたように、フロートガラスは錫と接 した面(ボトム面)と非接触面(トップ面)で大き く特性が異なる。

その典型例として、フロートガラスの徐冷中にボ トム面側からSO₂ガスの吹き付け処理を行った後の 深さ方向ブロファイルをFigure 2に示す。SO₂ガスに よる反応は、次のように進む。

 $SO_2 + 1/2O_2 + H_2O \Leftrightarrow H_2SO_4$

 $H_2SO_4 + 2Na^+ \Leftrightarrow Na_2SO_4 + 2H^+$

分析は第2章で用いたC₆₀イオンスパッタとXPSの 組み合わせで行った。ここで、トップ面側のSO₂の 吹き付け量は、ボトム面に吹き付けた際の回り込み によるもので、ボトム面に比べて少ない。しかし、 表面近傍での脱修飾イオン量はボトム面の方が少な い。これは、ボトム面に多く存在するSnにより、表 面近傍での反応が抑制されたためと推察される。さ らに、表面近傍でのプロトン拡散量は、上記イオン 交換反応により進むことから、脱修飾イオン量に対 応して変化することも一般的に知られている⁽¹⁷⁾。

このように、フロートガラス表面ではボトム面の 方がトップ面よりもSnおよび修飾イオン濃度が高

Fig. 2 XPS depth profiles using C₆₀ ion sputtering of SO₂ treated soda-lime-silica glass (70.4:SiO₂, 0.9:Al₂O₃, 7.3:MgO, 7.8:CaO, 13.6:Na₂O in mol%) on (a) top and (b) bottom surface, respectively.

く、かつ水酸基(OH)濃度が低い状態となってい る。この中でも特にSnの存在が表面特性に大きく影 響することにより、反射率および化学的耐久性、親 水性(吸着性)、還元性については、ボトム面の方 が高いことが確認されている⁽³⁾。

4. 光学ガラスの表面

数多くの光学ガラスは一般的に化学的に弱い。そこで、加工工程でのガラスの取り扱い方についての 指針を得るために、化学的耐久性の把握が重要となる⁽¹⁸⁾。また、プレス成形が行われる場合には、金型 との反応性についても考慮する必要がある。

例えば、還元されやすく反応性に富むテルライト ガラスは、接触する金型材料によってテルルの還元 状態が変わり、それに伴って着色度合も変化する⁽¹⁹⁾。 Figure 3に各種金型材料でプレスした後のテルライ トガラス(75TeO₂・20ZnO・5Na₂O)表面のXPS分 析結果を示す。着色が強い試料ほど、ガラス表面で のテルルの還元成分が増大している傾向が確認され ている。また、着色度の増大に伴い、金型成分がガ ラス中により多く拡散している様子も認められてい る。これより、次のような反応がガラスと金型界面 で生じていると考えられる。

 $Te^{4+} + M^0 \Rightarrow Te^{2- \text{ or } 0 \text{ or } 2+} + M^{6+ \text{ or } 4+ \text{ or } 2+} (M: Si, Ti, W)$

さらに、金型材料である金属成分の酸素との結合状 態が、テルライトガラスとの反応性と関係している ことも示唆されている。

各種ガラスとWC(炭化タングステン)金型との 反応性について、ガラスの塩基度との関係が報告さ れている⁽²⁰⁾。WC板上で各種ガラスを窒素雰囲気中 800℃で焼成すると、塩基度が高いガラスほど、WC 金型成分であるWがより深くまでガラス中に拡散し ていることがガラス断面のEPMA分析により確認さ れている。

このように、ガラス表面の塩基度は、ガラス表面 特性を示す一つの指標として用いることができる が、その意味する真の物性を理解しながら議論すべ きである。

Fig. 3 Te_{3d5} photoelectron spectra of the glass surface after press forming using each mold (M: Si, Ti, W, SiO₂, Si₃N₄). Inset is the enlarged view of the peak derived from the reduced tellurite.

5. 結 言

ガラスの表面特性を調べるために広く用いられて いる分析方法の概要、さらには最も一般的なガラス であるフロートガラス、様々な組成ガラスが検討さ れている光学ガラスの分析例について報告した。ガ ラスの表面特性は、その真の姿を分析的に明らかに することで、初めてその真相が明らかになる。広く 用いられているXPS (ESCA)分析において、C₆₀イ オンスパッタを用いることでアルカリガラスの深さ 方向分析が可能になった。これまで問題であった可 動イオン成分の分析中の移動をはじめ、極微小部の 分析など、まだまだガラス特有の分析的課題は多い。 これら課題を解決するためには、C₆₀イオンスパッタ のような分析手法のさらなる進歩が望まれる。

-参考文献-

- (1) 山中裕、ガラスの事典 朝倉書店 394 (1985).
- (2) 土橋正二、ガラス表面の物理化学 講談社 214 (1979).
- (3) 林泰夫, 工藤正博、表面科学 22 55 (2001).
- (4) V. Gottardi, F. Nicoletti, G. Battaglin, G. Della Mea, P. Mazzoldi, Verres Réfract. 35, 298 (1981).
- (5) 平島碩、ガラス工学ハンドブック 朝倉書店 213 (1999).
- (6) C. G. Pantano, *Ceramic Bulletin* **60**, 1154 (1981).
- (7) R. Brückner, H–U. Chun, H. Goretzki, *Glastech. Ber.* **51** 1 (1978).
- (8) S. Matsumoto, T. Nanba, Y. Miura, J. Ceram. Soc. Japan 106 415 (1998).
- (9) Peter March, Friedrich Rauch, Glastech. Ber. 63 154 (1990)
- (10) G. Kojima, K. Matsumoto, O. Sakamoto, Y. Yamamoto, M. Kawamoto, J. Non-Cryst. Solids, 292 (2001) 50.
- (11) 山本雄一、松本潔、小島弦、旭硝子研究報告 51 (2001)
 13.
- (12) B. M. J. Smets, T. P. A. Lommen, J. Am. Ceram. Soc. 65, C-80 (1982).
- (13) Y. Yamamoto, N. Shimodaira, Appl. Surf. Sci. 255 860 (2008).
- (14) Y. Yamamoto, K. Yamamoto, J. Non-Cryst. Solids in press.
- (15) 山本雄一、代田直子、山本清、表面科学 28 348 (2007).
- (16) Y. Yamamoto, S. Higashi, K. Yamamoto, Surf. Interface Anal. 40 1631 (2008).
- (17) T. Richter, G., H. Frischat, G. Borchardt, S. Scherrer, *Glasstechn. Ber.* 63 300 (1990).
- (18) 土橋正二、ガラスハンドブック 朝倉書店 767 (1975).
- (19) Y. Yamamoto, S. Matsumoto, N. Shimodaira, Proc. XX^{Ist} International Congress on Glass Strasbourg, J40 (2007). (The European Journal of Glass Science & Technology Part A, 50 (2009) 203.)
- (20) F. Sato, A. Sakamoto, Proc. XX^{1st} International Congress on Glass Strasbourg, L11 (2007).