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Simulation of Catastrophic Failure in a Residual Stress Field
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Residual stress has been empirically utilized for industrial applications to control material strength and
shape of fragments. The interaction between the dynamically growing cracks and the residual stress field is
sufficiently complicated to prevent us from building effective models. To rigorously evaluate the release
and redistribution of residual stress in the dynamic fracture process, we develop a mathematical model and
a numerical analysis method for the dynamic fracture in a residual stress field. Our methodology is simple
and rigorous and applicable regardless of materials and scales.
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Control of the residual stress field is a significant problem
in industrial applications because the residual stress field is
highly related to the strength of the bulk materials. The
tensile residual stress produces a stress concentration at crack
tips and promotes failure. Especially under high tensile
residual stress, the crack rapidly propagates and causes
catastrophic fragmentation of materials [1,2]. However, the
intentional introduction of surface compressive residual
stress by surface machining or a finishing process [3,4]
prevents crack initiation and growth. So far, because the
understanding of this fracture behavior in a residual stress
field is only intuitive, the controlled residual stress field is
empirically employed in manufacturing techniques to
improve material strength.

Fracture behavior in a residual stress field has also
attracted scientific attention. However, dynamic fracture in
a residual stress field brings substantial theoretical complex-
ity because we have to solve the mutual interaction among
crack propagation, change in the residual stress field, and
generation of the elastic wave [5]. Moreover, although the
systems and devices for the full-field measurement of the
stress field have been developed in recent years [e.g., digital
image correlation (DIC) [6-8] and high-speed digital photo-
elasticity [9-13] ], these experimental approaches are limited
to the evaluation of the outer surface residual stress field
(DIC) or the residual stress intensity averaged over the
thickness of the specimen (photoelasticity).

In view of this situation, attempts have been made
toward numerical analysis of crack growth in various
materials with a residual stress field [14—17]. In spite of
these attempts, the achievements of previous work are
mainly confined to the evaluation of the quasistatic
propagation of a single crack. The dynamic propagation
of multiple cracks in a residual stress field is still
unsolved and highly challenging.
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Mathematical model.—We first develop the mathemati-
cal model and numerical analysis method for the dynamic
fracture in a residual stress field by applying the discre-
tization scheme proposed in the particle discretization
scheme finite element method (PDS-FEM) to the solid
continuum with a residual stress field [18—20]. We assume
that the elastic deformation is the only source of the
residual stress in the solid material. The total strain tensor

€; j, which represents the total deformation from the initial
stress-free state, and the residual stress tensor o; ; are related
by 0;; = ciju(€el, — €)y), where c;j, is the elasticity tensor
and ¢!, is the permanent inelastic strain tensor. In this
Letter, all the strains that do not contribute to the generation
of the elastic stress (i.e., residual stress) in the linear elastic
material are referred to as the permanent inelastic strain €.

Let us consider a deformation problem for the homo-
geneous isotropic linearly elastic body Q with the pre-
scribed distribution of the inelastic strain. In PDS-FEM, the
analysis domain is discretized by using a pair of conjugate
geometries corresponding to a set of nodes {x®}: Voronoi
tessellations and Delaunay tessellations. Here, the super-
scripts @ and f respectively represent the variables for the
ath Voronoi tessellation and the fth Delaunay tessellation.
The discretized strain energy J stored in Q is
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where M is the number of Delaunay tessellations
and W is the volume of the pth Delaunay tessellation.
The summation convention is employed for subscripts
throughout this Letter. This discretized strain energy
J is expressed in terms of the total displacement ul®
by introducing the displacement-strain relationship in
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